
Nicholas & Peyrin
Summer 2021

CS 161
Computer Security Discussion 8

Web Security II
Question 1 Cross-site not scripting ()

Consider a simple web messaging service. You receive messages from other users. The
page shows all messages sent to you. Its HTML looks like this:

Mallory: Do you have time for a conference call?
Steam: Your account verification code is 86423
Mallory: Where are you? This is important!!!
Steam: Thank you for your purchase

The user is off buying video games from Steam, while Mallory is trying to get ahold of
them.

Users can include arbitrary HTML code messages and it will be concatenated into the
page, unsanitized. Sounds crazy, doesn’t it? However, they have a magical technique
that prevents any JavaScript code from running. Period.

Discuss what an attacker could do to snoop on another user’s messages. What specially
crafted messages could Mallory have sent to steal this user’s account verification code?

Page 1 of 3

Question 2 CSRF++ ()
Patsy-Bank learned about the CSRF flaw on their site described above. They hired a
security consultant who helped them fix it by adding a random CSRF token to the
sensitive /transfer request. A valid request now looks like:

https://patsy-bank.com/transfer?to=bob&amount=10&token=<random>

The CSRF token is chosen randomly, separately for each user.

Not one to give up easily, Mallory starts looking at the welcome page. She loads the
following URL in her browser:

https://patsy-bank.com/welcome?name=<script>alert("Jackpot!");</script>

When this page loaded, Mallory saw an alert pop up that says “Jackpot!”. She smiles,
knowing she can now force other bank customers to send her money.

(a) What kind of attack is the welcome page vulnerable to? Provide the name of the
category of attack.

(b) Mallory plans to use this vulnerability to bypass the CSRF token defense. She’ll
replace the alert("Jackpot!"); with some carefully chosen JavaScript. What
should her JavaScript do?

(c) patsy-bank.com sets SameSite=strict for all of its cookies. Does this stop the
attack from part (b)? Assume the welcome page does not require a user to be logged
in.

(d) Mallory wants to attack Bob, a customer of Patsy-Bank. Name one way that Mallory
could try to get Bob to click on a link she constructed.

Discussion 8 Page 2 of 3 CS 161 – Summer 2021

Question 3 Second-order linear... err I mean SQL injection ()
Alice likes to use a startup, NotAmazon, to do her online shopping. Whenever she adds an
item to her cart, a POST request containing the field item is made. On receiving such a
request, NotAmazon executes the following statement:

cart_add := fmt.Sprintf("INSERT INTO cart (session, item) " +
"VALUES (’%s’, ’%s’)", sessionToken, item)

db.Exec(cart_add)

Each item in the cart is stored as a separate row in the cart table.

(a) Alice is in desperate need of some toilet paper, but the website blocks her from
adding more than 72 rolls to her cart /Describe a POST request she can make to
cause the cart_add statement to add 100 rolls of toilet paper to her cart.

When a user visits their cart, NotAmazon populates the webpage with links to the items.
If a user only has one item in their cart, NotAmazon optimizes the query (avoiding joins)
by doing the following:

cart_query := fmt.Sprintf("SELECT item FROM cart " +
"WHERE session=’%s’ LIMIT 1", sessionToken)

item := db.Query(cart_query)
link_query = fmt.Sprintf("SELECT link FROM items WHERE item=’%s’", item)
db.Query(link_query)

After part(a), Alice recognizes a great business opportunity and begins reselling all of
NotAmazon’s toilet paper at inflated prices. In a panic, NotAmazon fixes the vulnerability
by parameterizing the cart_add statement.

(b) Alice claims that parameterizing the cart_add statement won’t stop her toilet paper
trafficking empire. Describe how she can still add 100 rolls of toilet paper to her
cart. Assume that NotAmazon checks that sessionToken is valid before executing
any queries involving it.

Discussion 8 Page 3 of 3 CS 161 – Summer 2021

