
Computer Science 161 Spring 2020 Popa and Wagner

Lecture 3: 
Buffer Overflows

1https://cs161.org

12

13

14

15

#293 HRE-THR 850 1930
ALICE SMITH
COACH

SPECIAL INSTRUX: NONE

16

17

#293 HRE-THR 850 1930
ALICE SMITHHHHHHHHHHH
HHACH

SPECIAL INSTRUX: NONE

How could Alice exploit this?
Find a partner and talk it through.

18

19

#293 HRE-THR 850 1930
ALICE SMITH
FIRST

SPECIAL INSTRUX: NONE

20

char name[20];

void vulnerable() {
 ...
 gets(name);
 ...
}

21

char name[20];
char instrux[80] = "none";

void vulnerable() {
 ...
 gets(name);
 ...
}

22

char name[20];
int seatinfirstclass = 0;

void vulnerable() {
 ...
 gets(name);
 ...
}

23

char name[20];
int authenticated = 0;

void vulnerable() {
 ...
 gets(name);
 ...
}

24

char line[512];
char command[] = "/usr/bin/finger";

void main() {
 ...
 gets(line);
 ...
 execv(command, ...);
}

25

char name[20];
int (*fnptr)();

void vulnerable() {
 ...
 gets(name);
 ...
}

26

27

void vulnerable() {
 char buf[64];
 ...
 gets(buf);
 ...
}

28

void still_vulnerable?() {
 char *buf = malloc(64);
 ...
 gets(buf);
 ...
}

29

Computer Science 161 Spring 2020 Popa and Wagner

Disclaimer: x86-32

• For this class, we are going to use 32-bit x86

• Almost everyone in this class has access to an x86 system: 

Mac, Linux, Windows...

• But these attacks do apply to other microarchitectures

30

Computer Science 161 Spring 2020 Popa and Wagner

Linux (32-bit) process memory layout

31

Reserved for Kernel

user stack

shared libraries

run time heap

static data segment

text segment (program)

unused

-0xC0000000

-0x40000000

-0x08048000

$esp

brk

Loaded from exec

-0x00000000

-0xFFFFFFFF

Computer Science 161 Spring 2020 Popa and Wagner

The main x86 registers…

• EAX-EDX: General purpose registers

• EBP: “Frame pointer”: points to the start of the current call

frame on the stack

• ESP: “Stack pointer”: points to the current stack

• PUSH: Decrement the stack pointer and store something there

• POP: Load something and increment the stack pointer

32

Computer Science 161 Spring 2020 Popa and Wagner

x86 function calling

• Place the arguments on the stack

• CALL the function

• Which pushes the return address onto the stack (RIP == Return Instruction Pointer)

• Function saves old EBP on the stack (SFP == Saved Frame Pointer)

• Function does its stuff

• Function restores everything

• Reload EBP, pop ESP as necessary

• RET

• Which jumps to the return address that is currently pointed to by ESP

• And can optionally pop the stack a lot further…

33

Computer Science 161 Spring 2020 Popa and Wagner

Buffer Overflows

3

4

user stack

shared libraries

run time heap

static data
segment

text segment
(program)

unused

-0xC0000000

-0x40000000

-0x08048000

-0x00000000

arguments

return address

saved frame pointer

exception handlers

local variables

callee saved registers

To previous saved
 frame pointer

To the point at which
 this function was called

5

void safe() {
 char buf[64];
 ...
 fgets(buf, 64, stdin);
 ...
}

6

void safer() {
 char buf[64];
 ...
 fgets(buf, sizeof(buf), stdin);
 ...
}

7

void vulnerable(int len, char *data) {
 char buf[64];
 if (len > 64)
 return;
 memcpy(buf, data, len);
}

memcpy(void *s1, const void *s2, size_t n);

Assume these are both under
the control of an attacker.

size_t is unsigned: 
What happens if len == -1?

8

void safe(size_t len, char *data) {
 char buf[64];
 if (len > 64)
 return;
 memcpy(buf, data, len);
}

9

void f(size_t len, char *data) {
 char *buf = malloc(len+2);
 if (buf == NULL) return;
 memcpy(buf, data, len);
 buf[len] = '\n';
 buf[len+1] = '\0';
}

Vulnerable! 
If len = 0xffffffff, allocates only 1 byte

Is it safe? Talk to your partner.

10

Computer Science 161 Spring 2020 Popa and Wagner

Memory Safety

11

12

void vulnerable() {
 char buf[64];
 if (fgets(buf, 64, stdin) == NULL)
 return;
 printf(buf);
}

13

printf("you scored %d\n", score);

14

r i p
s f p

s f p

p r i n t f ()

0x8048464

0x8048464
score

p r i n t f (“you scored %d\ n ”, s c o r e) ;

o yu
c sor

d e%

\ n d\ 0

15

printf("a %s costs $%d\n", item, price);

16

r i p
s f p

s f p

p r i n t f ()

0x8048464

0x8048464
i tem

p r i n t f (" a %s c o s t s $%d\ n ", i t e m , p r i c e) ;

a%s

cos

s t$

d %\ n\ 0

p r i c e

Computer Science 161 Spring 2020 Popa and Wagner

Fun With printf format strings...

17

printf("100% dude!");

Format argument is missing!

18

r i p
s f p

s f p

p r i n t f ()

0x8048464

0x8048464

p r i n t f (“100% dude!”) ;

0 10%
dud

! e\ 0

???

Computer Science 161 Spring 2020 Popa and Wagner

More Fun With printf format strings...

19

printf("100% dude!");
 ⇒ prints value 4 bytes above retaddr as integer
printf("100% sir!");

⇒ prints bytes pointed to by that stack entry 
 up through first NUL

printf("%d %d %d %d ...");
 ⇒ prints series of stack entries as integers
printf("%d %s");
 ⇒ prints value 8 bytes above retaddr plus bytes
 pointed to by preceding stack entry
printf("100% nuke’m!");

What does the %n format do??

20

int report_cost(int item_num, int price) {
 int colon_offset;
 printf("item %d:%n $%d\n", item_num,
 &colon_offset, price);
 return colon_offset;
}

report_cost(3, 22) prints "item 3: $22"
 and returns the value 7

report_cost(987, 5) prints "item 987: $5"
 and returns the value 9

%n writes the number of characters printed so far
into the corresponding format argument.

Computer Science 161 Spring 2020 Popa and Wagner

Fun With printf format strings...

21

printf("100% dude!");
 ⇒ prints value 4 bytes above retaddr as integer
printf("100% sir!");

⇒ prints bytes pointed to by that stack entry 
 up through first NUL

printf("%d %d %d %d ...");
 ⇒ prints series of stack entries as integers
printf("%d %s");
 ⇒ prints value 8 bytes above retaddr plus bytes
 pointed to by preceding stack entry
printf("100% nuke’m!");
 ⇒ writes the value 3 to the address pointed to by stack entry

22

void safe() {
 char buf[64];
 if (fgets(buf, 64, stdin) == NULL)
 return;
 printf("%s", buf);
}

Computer Science 161 Spring 2020 Popa and Wagner

It isn't just the stack...

• Control flow attacks require that the attacker overwrite a
piece of memory that contains a pointer for future code
execution

• The return address on the stack is just the easiest target

• You can cause plenty of mayhem overwriting memory in the
heap...

• And it is made easier when targeting C++

• Allows alternate ways to hijack control flow of the program

23

Computer Science 161 Spring 2020 Popa and Wagner

Compiler Operation: 
Compiling Object Oriented Code

24

class Foo {
 int i, j, k;
 public virtual void bar(){ ... }
 public virtual void baz(){ ... }
....

vtable ptr (class Foo)

i

j

k

ptr to Foo::bar

ptr to Foo::baz

...

...

Computer Science 161 Spring 2020 Popa and Wagner

A Few Exploit Techniques

• If you can overwrite a vtable pointer…

• It is effectively the same as overwriting the return address pointer on the stack: 

When the function gets invoked the control flow is hijacked to point to the attacker’s code

• The only difference is that instead of overwriting with a pointer you overwrite it with a pointer to a

table of pointers...

• Heap Overflow:

• A buffer in the heap is not checked: 

Attacker writes beyond and overwrites the vtable pointer of the next object in memory

• Use-after-free:

• An object is deallocated too early: 

Attacker writes new data in a newly reallocated block that overwrites the vtable pointer

• Object is then invoked

25

Computer Science 161 Spring 2020 Popa and Wagner

Magic Numbers & Exploitation…

• Exploits can often be very brittle

• You see this on your Project 1: Your ./egg will not work on someone else’s

VM because the memory layout is different

• Making an exploit robust is an art unto itself

• EXTRABACON is an NSA exploit for Cisco ASA “Adaptive Security

Appliances”

• It had an exploitable stack-overflow vulnerability in the SNMP read operation

• But actual exploitation required two steps: 

Query for the particular version (with an SMTP read) 
Select the proper set of magic numbers for that version

26

Computer Science 161 Spring 2020 Popa and Wagner

A hack that helps: 
NOOP sled...
• Don't just overwrite the pointer and then provide the code

you want to execute...

• Instead, write a large number of NOOP operations

• Instructions that do nothing

• Now if you are a little off, it doesn't matter

• Since if you are close enough, control flow will land in the sled and start

running...

27

Computer Science 161 Spring 2020 Popa and Wagner

ETERNALBLUE

• ETERNALBLUE is another NSA exploit

• Stolen by the same group ("ShadowBrokers") which stole EXTRABACON

• Remote exploit for Windows through SMBv1 (Windows File sharing)

• Eventually it was very robust...

• But initially it was jokingly called ETERNALBLUESCREEN, because it would

crash Windows computers more reliably than exploitation.

28

Computer Science 161 Spring 2020 Popa and Wagner

Memory Safety

• Memory Safety: No accesses to undefined memory

• "Undefined" is with respect to the semantics of the programming language

• Read Access: attacker can read memory that he isn't supposed to

• Write Access: attacker can write memory that she isn't supposed to

• Execute Access: transfer control flow to memory they aren’t supposed to

• Spatial safety: No access out of bounds

• Temporal safety: No access before or after lifetime of object

29

30

